

Análsis matemático

Temario de Análisis real

- 1. Nociones de conjuntos y funciones: operaciones entre conjuntos, álgebra de conjuntos, familias de conjuntos, conjuntos finitos, conjuntos numerables.
- 2. Números reales: axiomas de campo, de orden y del supremo, propiedades de valor absoluto, propiedad arquimediana.
- 3. Sucesiones: sucesiones y límites de sucesiones, propiedades de los límites, sucesiones monótonas, subsucesiones y criterio de Cauchy.
- 4. Límites de funciones: definición, propiedades, teoremas sobre límites, límites laterales, límites infinitos y límites en infinito.
- 5. Continuidad de funciones: tipos de discontinuidad, teorema del valor intermedio y teorema del máximo.
- 6. Derivación: interpretación geométrica de la derivada, propiedades, reglas de derivación, regla de la cadena, derivación implícita y derivadas de orden superior.
- 7. Aplicaciones de la derivada: rapidez de variación, extremos de funciones, teorema de Rolle y del valor medio, análisis de gráficas de funciones, regla del L'Hospital y problemas de optimización.
- 8. Integración: Integral definida, propiedades y teorema fundamental del cálculo.
- 9. Métodos de integración: Cambio de variable, por partes, por sustitución trigonométricas y por fracciones parciales.
- 10. Aplicaciones de la integral: área de una región entre dos curvas, volúmenes, longitud de arco, área de superficie, momentos, centros de masa, centroides y, presión y fuerza de un fluido.

Guía para el examen de admisión

11. Series: convergencia, serie armónica, serie p, comparación de series, series alternantes, criterios del cociente, criterio de la raíz, y polinomios de Taylor y aproximación.

Temario de Análisis de funciones de varias variables

- 1. Límites y continuidad.
- 2. Derivadas parciales y diferenciabilidad.
- 3. Regla de la cadena, derivadas direccionales y gradientes.
- 4. Planos tangentes y rectas normales.
- 5. Derivadas parciales de orden superior.
- 6. Aproximación por polinomios de Taylor.
- 7. Teorema de la función inversa.
- 8. Teorema de la función implícita.
- 9. Divergencia, laplaciano y rotacional.
- 10. Máximos y mínimos: puntos críticos, puntos silla y Hessiano.
- 11. Integrales dobles: Integrales iteradas, integrales dobles, teorema de Fubini, cálculo de áreas y cambio de variable (coordenadas polares).
- 12. Integrales triples: cálculo de integrales triples y volúmenes, teorema de cambio de variable, integrales en coordenadas polares, cilíndricas y esféricas.

Temario de Análisis vectorial

- 1. Campos vectoriales
- 2. Integrales de línea.

- 3. Integrales de superficie.
- 4. Teorema de Green.
- 5. Teorema de la Divergencia.
- 6. Teorema de Stokes.

Guía de estudio

- 1. Sean $a, b \in \mathbb{R}$ y $f : \mathbb{R} \to \mathbb{R}$ una función. Probar que $\lim_{x \to a} f(x) = b$ si y sólo si $\lim_{x \to a^{-}} f(x) = b = \lim_{x \to a^{+}} f(x)$.
- 2. Sean $a, b \in \mathbb{R}$ tales que $a < b, f : [a, b] \to \mathbb{R}$ y $g : [a, b] \to \mathbb{R}$ funciones diferenciables en $c \in [a, b]$ y $k \in \mathbb{R}$. Probar que:
 - a) kf es diferenciable en $c \in [a, b]$ y (kf)'(c) = kf'(c),
 - b) f + g es diferenciable en $c \in [a, b]$ y (f + g)'(c) = f'(c) + g'(c),
 - c) fg es diferenciable en $c \in [a,b]$ y (fg)'(c) = f'(c)g(c) + g'(c)f(c),
 - d) Si $g(c) \neq 0$, $\frac{f}{g}$ es diferenciable en $c \in [a,b]$ y $(\frac{f}{g})'(c) = \frac{f'(c)g(c) g'(c)f(c)}{(g(c))^2}$.
- 3. Sea $f: X \to \mathbb{R}$ derivable en el punto $a \in X \cap X'$. Si $\{x_n\}$, $\{y_n\}$ son sucesiones de puntos en X tales que $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a \text{ y } x_n < a < y_n \text{ para todo } n \in \mathbb{N}, \text{ entonces } \lim_{n \to \infty} \frac{f(y_n) f(x_n)}{y_n x_n} = f'(a).$
- 4. Sean $a, b \in \mathbb{R}$ tales que $a < b, f : [a, b] \to \mathbb{R}$ una función continua en [a, b] y diferenciable en (a, b). Demostrar que existe $c \in (a, b)$ tal que f'(c)(b a) = f(b) f(a).
- 5. Sean $a, b \in \mathbb{R}$ tales que a < b y $f : [a, b] \to \mathbb{R}$ una función diferenciable en [a, b] tal que $f'(x) \neq 0$, para cada $x \in [a, b]$. Probar que:
 - a) f es inyectiva y estrictamente creciente o decreciente,
 - b) f^{-1} es diferenciable en f([a,b]),
 - c) Para cada $y \in f([a, b]), (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$
- 6. Probar que: si $a, b \in \mathbb{R}$ con $a < b, f : [a, b] \to \mathbb{R}$ una función, $x_0 \in [a, b]$ y f es diferenciable en x_0 , entonces f es

Guía para el examen de admisión

continua en x_0 .

- 7. Sean $a, b \in \mathbb{R}$ tales que $a < b, f : [a, b] \to \mathbb{R}$ una función continua sobre (a, b) con derivada f'(x) finita en todo $x \in (a, b)$ excepto posiblemente en $c \in (a, b)$. Si $\lim_{x \to c} f'(x)$ existe y tiene el valor de A, probar que f'(c) también existe y tiene el valor A.
- 8. Hallar la integral indicada.

$$\int \sqrt{2x^2 - 1} dx$$

$$\int \frac{\sqrt{1-x^2}}{x^4} dx$$

$$\int \frac{x^3 + x + 1}{x^4 + 2x^2 + 1} dx$$

- 9. Sean $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$, $a \in A'$, $b \in B'$ y $f : A \times B \to \mathbb{R}$. Suponga que:
 - a) $\lim_{y\to b} f(x,y)$ existe para todo $x\in A$.
 - b) $\lim_{x\to a} f(x,y)$ existe uniformemente sobre B.

Demostrar que los límites iterados lím $\sup_{x\to a} \lim_{y\to b} f(x,y)$, lím $\lim_{y\to b} \lim_{x\to a} f(x,y)$ y el doble lím $\lim_{(x,y)\to(a,b)} f(x,y)$ existen y todos son iguales.

10. Analizar la diferenciabilidad de $f: \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^4}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

11. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Verificar que $\frac{\partial f}{\partial x}(x,y)$, $\frac{\partial f}{\partial x}(x,y)$ existen en cada punto de \mathbb{R}^2 y que f no es continua en (0,0).

12. Sean $a, b \in \mathbb{R}$ tales que a < b. Probar que si $f : [a, b] \to \mathbb{R}^n$ es una función continua en [a, b] y diferenciable en (a, b), entonces existe $x \in (a, b)$ tal que

$$||f(b) - f(a)|| \le ||Df(x)|||b - a||$$

13. Utilizar el Teorema de la Divergencia para evaluar $\int \int_S \mathbf{F} \cdot \mathbf{N} dS$, donde S es la superficie del sólido Q acotado por las gráficas de las ecuaciones dadas y \mathbf{F} es el campo indicado.

$$\mathbf{F}(x, y, z) = (xy^2 + \cos z)\mathbf{i} + (x^2y + \sin z)\mathbf{j} + e^z\mathbf{k},$$

$$S: z = 8 \text{ y } z = \frac{1}{2}\sqrt{x^2 + y^2}.$$

14. Evaluar la integral siguiente, usando el Teorema de Stokes:

$$\int_C -y^3 dx + x^3 dy - z^3 dz,$$

donde C es la intersección del cilindro $x^2 + y^2 = 1$ y el plano x + y + z = 1 y la orientación de C es en sentido contrario al de las manecillas del reloj en el plano xy.

Bibliografía

- 1. L. Leithold, El cálculo con geometrá anaítica, Ed. Harla México, cualquier edición.
- 2. M. Spivak, Calculus, Editorial Reverté, 3ª Edición 2012.
- 3. T.M. Apostol, Calculus I, Editorial Reverté, 2011.
- 4. T.M. Apostol, Calculus II, Editorial Reverté, 2010.

Álgebra

Temario de Álgebra lineal

- 1. Matrices y determinantes.
- 2. Sistemas de ecuaciones lineales.
- 3. Espacios vectoriales. Subespacios.
- 4. Bases.
- 5. Transformaciones lineales.
- 6. Isomorfismos.

Temario de Álgebra moderna

- 1. Grupos. Subgrupos.
- 2. Grupos cíclicos. Grupos abelianos.
- 3. Homomorfismos e Isomorfismos de grupos.
- 4. Anillos.
- 5. Anillos conmutativos, dominios enteros, ideales.
- 6. Homomorfismos e Isomorfismos de anillos.

Guía de estudio

- 1. Sea $V = M_{n \times n}(\mathbb{R})$ y sea $H_1 = \{A \in V : A^t = A\}$, $H_2 = \{A \in V : A^t = -A\}$
 - a) Demuestra que H_1 y H_2 son subespacios.
 - b) Demuestra que $V = H_1 \oplus H_2$.

Guía para el examen de admisión

- c) Obtén una base para cada uno de ellos y da su dimensión.
- 2. Sea $T: M_{2\times 3}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$, dada por $T\begin{pmatrix} a & b & c \\ & & \\ d & e & f \end{pmatrix} = \begin{pmatrix} 2a-b & c-2d \\ & & \\ 0 & & 0 \end{pmatrix}$
 - a) Demuestra que T es una transformación lineal
 - b) Obtén su núcleo e imagen. Da el rango y la nulidad.
 - c) Obtén la representación matricial de T respecto a las bases canónicas.
 - a) Sea A una matriz invertible de tamaño $n \times n$. Defínase $T: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$, por $T(X) = AXA^{-1}$. Demuestra que T es un isomorfismo.
 - b) Sea lineal $T:V\to W$ una transformación lineal, donde V y W son espacios vectoriales de dimensión finita. Demostrar que si $\dim V<\dim W$ entonces T no puede ser sobreyectiva.
 - c) Para $V=P_2(R)$, y $B=\left\{1+x^2,1+2x+x^2,-x^2\right\}$ base para V. Obtén la base dual B^* para V^*
- 3. Sea $T: P_2(R) \to P_2(R)$ dada por $T(a+bx+cx^2) = (-a-3c) + (3a+2b+3c)x + (-3a-c)x^2$. Determina si T es diagonalizable, si es así, obtén una base B formada de vectores propios de T, la representación matricial $[T]_B^B$ y la matriz de cambio de base Q de B a E.
- 4. Si T es un operador diagonilizable de un espacio vectorial V de dimensión finita, prueba que T^2 también diagonalizable.
- 5. Sea $T:V\to W$ una transformación lineal inyectiva, prueba que $S\subset V$ es linealmente independiente en V si y sólo si T(S) es linealmente independiente en W.
- 6. Sea $H = \{p(x) \in P_3(\mathbb{R}) : p'(x) 2p(x) = 0\}$. Demuestra que H es un subespacio de $P_3(\mathbb{R})$.
- 7. Sea $T: P_1(R) \to D_{2\times 2}(R)$ dada por $T(a+bx) = \begin{pmatrix} a+b & 0 \\ 0 & 2a-b \end{pmatrix}$, donde $D_{2\times 2}(R)$ es el espacio vectorial de las matrices diagonales de 2×2 .

Guía para el examen de admisión

- a) Demuestra que T es una transformación lineal.
- b) Obtén su núcleo e imagen, así como una base para cada uno de ellos y su dimensión.
- c) Es T un isomorfismo?
- d) Obtén la representación matricial de $T,\, [T]_{B_1}^{B_2},\, {\rm donde}$

$$B_1 = \{1 + x, 1 - x\}, \quad B_2 = \left\{ \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

- 3. Determina si la matriz $A=\begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix}$ es diagonalizable, si lo es, obtén una matriz diagonal D y una matriz invertible Q tal que $A=QDQ^{-1}$
- 4. Sea $T:V\to W$ una transformación lineal inyectiva, prueba que $S\subset V$ es linealmente independiente en V si y sólo si T(S) es linealmente independiente en W.
- 5. Si T es un operador diagonilizable de un ev V de dimensión finita, prueba que para todo $p(t) \in P(F)$ se cumple que p(T) es también diagonalizable.
- 6. Sea A una matriz cuadrada cuyo polinomio característico es $f(t) = a_0 + a_1 t + ... + a_{n-1} t^{n-1} + (-1)^n t^n$. Deducir que $a_0 = \det A$ y que A es invertible si y sólo si $a_0 \neq 0$.
- 7. Sea $A \in M_{m \times n}(F)$, demostrar que para cualquier escalar $c \neq 0$, se cumple que rango(cA) = ran(A).
- 8. a) .Sea G un grupo finito con mas de un elemento. Demuestra que si los únicos subgrupos de G son $\{e\}$ y el mismo G, entoces G es cíclico y de orden primo.
 - b) Demuestra que todo grupo cíclico de orden primo tiene exactamente p-1 generadores.
 - c) Demuestra que todo subgrupo de índice 2del grupo G es normal en G.

Guía para el examen de admisión

- 9. Sea $T:G\to G'$ un isomorfismo. Demuestre que:
 - a) G es abeliano si y sólo si G es abeliano
 - b) G es cíclico si y sólo si G es cíclico.
 - c) g es generador de G si y sólo si T(g) es generador de G.
 - d) Demuestra que todo grupo de orden 33 es cíclico.
- 10. Un ideal P de un anillo conmutativo R se dice primo si siempre que $ab \in P$ se cumple que o bien $a \in P$ o bien $b \in P$. Demuestra que
 - a) Todo ideal maximal de \mathbb{Z} es primo.
 - b) El ideal P del anillo conmutativo R es primo si y sólo si R/P es un dominio entero.
 - c) Todo ideal maximal del anillo Q[x] es primo.
- 11. Sea \mathbb{R}^* el conjunto de todos los números reales distintos de cero. Defínase a*b en \mathbb{R}^* por |a|b.
 - a) Muéstrese que * da un operación binaria asociativa en \mathbb{R}^* .
 - b) Muéstrese que existe una identidad izquierda para * y un inverso derecho para cada elemento en \mathbb{R}^* .
 - c) Con esta operación binaria, \mathbb{R}^* es un grupo?
 - d) Explíquese la importancia de este ejercicio
- 12. Sea G un grupo abeliano y sean H y K subgrupos cíclicos finitos con o(H) = r y o(K) = s
 - a) Muéstrese que si r y s son primos relativos, entonces G contiene un subgrupo cíclico de orden rs.
 - b) Muéstrese que G contiene un subgrupo cíclico cuyo orden es el mínimo común múltiplo de r y s.
- 13. El signo de una permutación par es +1, el signo de una permutación impar es -1. Obsérvese que la transformación $\Psi: S_n \longrightarrow \{+1, -1\}$, dada por $\Psi(\rho) = signo(\rho)$, es un homomorfismo donde a $\{+1, -1\}$ se toma con la multiplicación. ¿Cuál es el kernel?

Guía para el examen de admisión

- 14. Sean G y G grupos y sean H y H subgrupos normales de G y G, respectivamente. Sea Φ un homomorfismo de G en G. Muéstrese que Φ induce un homomorfismo de natural $\Phi: G/H \longrightarrow G/H$ siempre que $\Phi(H) \subset H$.
- 15. Sea G un grupo. Muéstrese que la relación $A \approx B$ si y solo si $A = g^{-1}Bg$ para alguna $g \in G$ es una relación de equivalencia en G. Algunas clases de equivalencia solo contienen un elemento, caracteriza dichas clases.
- 16. Sea A un anillo con elemento unitario. Definamos otras operaciones en A, por: $a \oplus b = a+b+1$ y $a \otimes b = ab+a+b$. Sea A^* el conjunto A con estas operaciones. Prueba que A^* es un anillo.
- 17. Demuestra que la característica de un dominio entero o es cero o es un número primo.
- 18. Pruébese que cualquier homomorfismo de un campo es inyectivo o es el homomorfismo cero.

Bibliografía

- 1. Friedberg, Insel, Spence, Linear Algebra, Prentice Hall, Fourth Edition 2003.
- 2. J. Fraleigh, Álgebra lineal, Addison-Wesley Iberoamericana, 1^a Edición 1989.
- 3. I.N. Herstein, Álgebra moderna, Editorial Trillas, 1999.
- 4. J.B. Fraleigh, Abstract Algebra, Addison-Wesley, Seventh Edition, 2003.

Ecuaciones diferenciales

Temario

- 1. Modelos Matemáticos con ecuaciones diferenciales.
- 2. Teorema de existencia y unicidad.
- 3. Soluciones de ecuaciones diferenciales mediante series de potencias.
- 4. Soluciones de ecuaciones diferenciales a través de Transformada de Laplace.
- 5. Sistemas de ecuaciones lineales ordinarias.

Guía de estudio

- 1. Determine las regiones del plano xy en la cual la ecuación diferencial $(4 y^2)y' = x^2$ tiene una única solución por cada punto (x_0, y_0) en las regiones.
- 2. a) Encuentra dos soluciones del problema con valores iniciales $\frac{dy}{dx} = xy^{1/2}$ sujeto a y(0) = 0.
 - b) ¿Por qué las condiciones del teorema de existencia y unicidad no se satisfacen para el problema anterior?
- 3. Despreciando las altas tasas de emigración y de homicidios, la población de la ciudad de Nueva York satisface la siguiente ley logística

$$\frac{dp}{dt} = \frac{1}{25}p - \frac{1}{(25)10^6}p^2,$$

donde t se mide en años.

- a) Modifique la ecuación para tomar en cuenta el hecho de que 9000 personas se mudan anualmente a las afueras de la ciudad, y de que 1000 personas son asesinadas en el mismo periodo.
- b) Suponga que la población de Nueva York en 1970 era de 8 000 000. Calcula la población para el futuro. ¿Qué sucede cuando $t \to \infty$?

- 4. Un tanque contiene S_0 lb de sal disueltas en 200 galones de agua. En el tiempo t=0 entra agua que contiene 1/2 lb de sal por galón, con un gasto de 4 gal/min, y la solución homogenizada sale del depósito con la misma intensidad. Determinar la concentración de sal en el tanque para todo tiempo t>0.
- 5. La ecuación diferencial siguiente se llama ecuación de Airy, y aparece en el estudio de la difracción de la luz, de las ondas de radio alrededor de la superficie de la tierra, en aerodinámica y en la flexión de una columna vertical delgada que se pandea bajo su propio peso: y'' + xy = 0. Proporcione dos soluciones en series de potencias linealmente independientes.
- 6. Resuelva la ecuación $y'' + y \cos x = 0$, usando series de potencias. Sugerencia: x = 0 es un punto ordinario.
- 7. a) Probar que si f es continua a trozos sobre cada [0, b], b > 0, y f es de orden exponencial α , entonces

$$\mathcal{L}\lbrace t^n f(t)\rbrace = (-1)^n \frac{d^n}{ds^n} F(s), \quad s > \alpha, \quad n = 1, 2, \cdots,$$

donde $F = \mathcal{L}\{f\}$.

b) Usar el ejercicio anterior para encontrar

$$\mathcal{L}\{t \operatorname{sen} kt\}, \quad \mathcal{L}^{-1}\left\{\ln\frac{s-3}{s+1}\right\}, \quad \mathcal{L}^{-1}\left\{\ln\left(1+\frac{1}{s^2}\right)\right\}.$$

8. Resolver la siguiente ecuación

$$y'(t) = \cos t + \int_0^t y(\tau)\cos(t-\tau)d\tau, \ y(0) = 1.$$

9. Determine todos los vectores \mathbf{X}_0 tales que la solución del problema de valor inicial

$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & -1 & -1 \end{pmatrix} \mathbf{X}, \quad \mathbf{X}(0) = \mathbf{X}_0$$

es una función periódica del tiempo.

10. Resolver el problema de valor inicial

$$\mathbf{X}' = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix} \mathbf{X} + \begin{pmatrix} 0 \\ 0 \\ e^t \cos(2t) \end{pmatrix}, \quad \mathbf{X}(0) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Guía para el examen de admisión

Bibliografía

- Boyce W. E., DiPrima R. C., Ecuaciones diferenciales y problemas con valores en la frontera, quinta edición, Limusa Wiley, 2010.
- 2. Hirsh M. W., Smale S., Ecuaciones diferenciales, sistemas dinámicos y álgebra lineal, Alianza editorial, 1974.
- 3. Shepley L. Ross, Differential Equations, Denklemler KORKMAZ, 1984.
- 4. Dennis G. Zill, Ecuaciones diferenciales con aplicaciones de modelado, Cengage Learning, Novena edición, 2011.